Sunday 13 March 2016

Chemical Engineering

Chemical Engineering is a branch of science that applies physical sciences (physics and chemistry) and life sciences (microbiology and biochemistry) together with applied mathematics and economics to produce, transform, transport, and properly use chemicals, materials and energy. Essentially, chemical engineers design large-scale processes that convert chemicals, raw materials, living cells, microorganisms and energy into useful forms and products.

Chemical engineering involves managing plant processes and conditions to ensure optimal plant operation. Chemical reaction engineers construct models for reactor analysis and design using laboratory data and physical parameters, such as chemical thermodynamics, to solve problems and predict reactor performance

Chemical engineering design concerns the creation of plans, specification, and economic analyses for pilot plants, new plants or plant modifications. Design engineers often work in a consulting role, designing plants to meet clients' needs. Design is limited by a number of factors, including funding, government regulations and safety standards. These constraints dictate a plant's choice of process, materials and equipment.

Plant construction is coordinated by project engineers and project managers  depending on the size of the investment. A chemical engineer may do the job of project engineer full-time or part of the time, which requires additional training and job skills, or act as a consultant to the project group. In USA the education of chemical engineering graduates from the Baccalaureate programs accredited by ABET do not usually stress project engineering education, which can be obtained by specialized training, as electives, or from graduate programs. Project engineering jobs are some of the largest employers for chemical engineers.

No comments:

Post a Comment